Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Hepatology ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630500

RESUMO

BACKGROUND AND AIMS: The liver cirrhosis complications occur after long asymptomatic stages of progressive fibrosis and are generally diagnosed late. We aimed to develop a plasma metabolomic-based score tool to predict these events. APPROACH AND RESULTS: We enrolled 64,005 UK biobank participants with metabolomic profile. Participants were randomly divided into the training (n=43,734) and validation cohorts (n=20,271). Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with hepatocellular carcinoma. Interpretable machine learning framework was applied to learn the metabolomic states extracted from 168 circulating metabolites in the training cohort. An integrated nomogram was developed and compared to conventional and genetic risk scores. We created three groups: low-risk, middle-risk, and high-risk through selected cut-offs of the nomogram. The predictive performance was validated through area under time-dependent receiver operating characteristic curve (time-dependent AUC), calibration curves, and decision curve analysis. The metabolomic state model could accurately predict 10-year risk of liver cirrhosis complications in the training cohort (time-dependent AUC 0.84 [95% CI 0.82-0.86]), and outperform the fibrosis-4 index (time-dependent AUC difference 0.06 [0.03-0.10]) and polygenic risk score (0.25 [0.21-0.29]). The nomogram, integrating metabolomic state, aspartate aminotransferase, platelet count, waist/hip ratio, and smoking status, showed a time-dependent AUC of 0.930 at 3 years, 0.889 at 5 years, and 0.861 at 10 years in the validation cohort, respectively. The hazard ratio in the high-risk group was 43.58 (95% CI 27.08-70.12) compared with the low-risk group. CONCLUSIONS: We developed a metabolomic state-integrated nomogram, which enables risk stratification and personalized administration of liver-related events.

2.
Theor Appl Genet ; 137(3): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441650

RESUMO

KEY MESSAGE: Twenty-eight QTLs for LLS disease resistance were identified using an amphidiploid constructed mapping population, a favorable 530-kb chromosome segment derived from wild species contributes to the LLS resistance. Late leaf spot (LLS) is one of the major foliar diseases of peanut, causing serious yield loss and affecting the quality of kernel and forage. Some wild Arachis species possess higher resistance to LLS as compared with cultivated peanut; however, ploidy level differences restrict utilization of wild species. In this study, a synthetic amphidiploid (Ipadur) of wild peanuts with high LLS resistance was used to cross with Tifrunner to construct TI population. In total, 200 recombinant inbred lines were collected for whole-genome resequencing. A high-density bin-based genetic linkage map was constructed, which includes 4,809 bin markers with an average inter-bin distance of 0.43 cM. The recombination across cultivated and wild species was unevenly distributed, providing a novel recombination landscape for cultivated-wild Arachis species. Using phenotyping data collected across three environments, 28 QTLs for LLS disease resistance were identified, explaining 4.35-20.42% of phenotypic variation. The major QTL located on chromosome 14, qLLS14.1, could be consistently detected in 2021 Jiyang and 2022 Henan with 20.42% and 12.12% PVE, respectively. A favorable 530-kb chromosome segment derived from Ipadur was identified in the region of qLLS14.1, in which 23 disease resistance proteins were located and six of them showed significant sequence variations between Tifrunner and Ipadur. Allelic variation analysis indicating the 530-kb segment of wild species might contribute to the disease resistance of LLS. These associate genomic regions and candidate resistance genes are of great significance for peanut breeding programs for bringing durable resistance through pyramiding such multiple LLS resistance loci into peanut cultivars.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos
3.
PeerJ ; 11: e16279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908413

RESUMO

Background: Gibberellins (GAs) play important roles in regulating peanut growth and development. GA20ox and GA3ox are key enzymes involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in peanut pod development are not clear. Methods: A whole-genome analysis of AhGA20ox and AhGA3ox gene families in peanut was carried out using bioinformatic tools. The expression of these genes at different stage of pod development was analyzed using qRT-PCR. Results: In this study, a total of 15 AhGA20ox and five AhGA3ox genes were identified in peanut genome, which were distributed on 14 chromosomes. Phylogenetic analysis divided the GA20oxs and GA3oxs into three groups, but AhGA20oxs and AhGA3oxs in two groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. AhGA20ox and AhGA3ox genes were differential expressed at different stages of pod development. The strong expression of AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation. Furthermore, AhGA20ox and AhGA3ox also showed diverse expression patterns in different peanut tissues including leaves, main stems, flowers and inflorescences. Noticeably, AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were highly expressed in the main stem, whereas the AhGA3ox1 and AhGA20ox10 were strongly expressed in the inflorescence. The expression levels of AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were high in the flowers, suggesting their involvement in flower development. These results provide a basis for deciphering the roles of AhGA20ox and AhGA3ox in peanut growth and development, especially in pod development.


Assuntos
Arachis , Família Multigênica , Arachis/genética , Filogenia , Família Multigênica/genética , Giberelinas/metabolismo
4.
Genes (Basel) ; 14(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895293

RESUMO

Cytochrome P450s (CYPs) constitute extensive enzyme superfamilies in the plants, playing pivotal roles in a multitude of biosynthetic and detoxification pathways essential for growth and development, such as the flavonoid biosynthesis pathway. However, CYPs have not yet been systematically studied in the cultivated peanuts (Arachis hypogaea L.), a globally significant cash crop. This study addresses this knowledge deficit through a comprehensive genome-wide analysis, leading to the identification of 589 AhCYP genes in peanuts. Through phylogenetic analysis, all AhCYPs were systematically classified into 9 clans, 43 gene families. The variability in the number of gene family members suggests specialization in biological functions. Intriguingly, both tandem duplication and fragment duplication events have emerged as pivotal drivers in the evolutionary expansion of the AhCYP superfamily. Ka/Ks analysis underscored the substantial influence of strong purifying selection on the evolution of AhCYPs. Furthermore, we selected 21 genes encoding 8 enzymes associated with the flavonoid pathway. The results of quantitative real-time PCR (qRT-PCR) experiments unveiled stage-specific expression patterns during the development of peanut testa, with discernible variations between pink and red testa. Importantly, we identified a direct correlation between gene expression levels and the accumulation of metabolites. These findings offer valuable insights into elucidating the comprehensive functions of AhCYPs and the underlying mechanisms governing the divergent accumulation of flavonoids in testa of different colors.


Assuntos
Arachis , Sistema Enzimático do Citocromo P-450 , Arachis/genética , Arachis/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma , Flavonoides/genética , Flavonoides/metabolismo
5.
ACS Omega ; 8(39): 36543-36552, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810655

RESUMO

Early screening and administration of DKD are beneficial for renal outcomes of type 2 diabetic patients. However, the current early diagnosis using the albuminuria/creatine ratio (ACR) contains limitations. This study aimed to compare serum lipidome variation between type 2 diabetes and early DKD patients with increased albuminuria through an untargeted lipidomics method to explore the potential lipid biomarkers for DKD identification. 92 type 2 diabetic patients were enrolled and divided into two groups: DM group (ACR < 3 mg/mmol, n = 49) and early DKD group (3 mg/mmol ≤ ACR < 30 mg/mmol, n = 43). Fasting serum was analyzed through an ultraperformance liquid mass spectrometry tandem chromatography system (LC-MS). Orthogonal partial least-squares discriminant analysis (OPLS-DA) and univariate and multivariate analysis were performed to filter differentially depressed lipids. Receiver operating characteristic (ROC) curves were used to estimate the diagnostic capability of potential lipid biomarkers. We found that serum phospholipids including phosphatidylserine (PS), sphingomyelin (SM), and phosphatidylcholine (PC) were significantly upregulated in the DKD group and were highly correlated with the ACR. In addition, a panel of two phospholipids including PS(27:0)-H and PS(30:2e)-H showed good performance to help clinical lipids in early DKD identification, which increased the area under the curve (AUC) from 0.568 to 0.954. The study exhibited the serum lipidome variation in early DKD patients, and the increased phospholipids might participate in the development of albuminuria. The panel of PS(27:0)-H and PS(30:2e)-H could be a potential biomarker for DKD diagnosis.

6.
Front Public Health ; 11: 1061579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033034

RESUMO

Objective: To investigate the relationship between social support and quality of life of Chinese migrant workers and to explore the mediating role of healthy lifestyles in social support and quality of life. Methods: Using a stratified multi-stage sampling method, 1, 298 migrant workers and 983 urban workers across 110 neighborhood committees in five economic development zones in eastern China were surveyed. The social support level of participants was quantified using the Social Support Rating Scale, and quality of life was evaluated using the SF-8. Healthy lifestyle was evaluated based on a combination of sleep, smoking, alcohol consumption, and exercise. Multiple linear regression analysis was used to assess the relationship between quality of life and social support. Stepwise regression was used to analyze the mediating effect of healthy lifestyle, social support, and quality of life among migrant workers. Results: Total SSRS and total SF-8 scores of migrant workers were significantly higher than those of urban workers (P < 0.001). After controlling for confounders, social support showed an independent positive association with quality of life for both migrant (ß = 0.50, P < 0.05) and urban workers (ß = 0.62, P < 0.05). Mediation effect analysis revealed that healthy lifestyle partially mediated the relation between social support and quality of life of migrant workers with a mediation effect of 0.07, accounting for 11.70% of the total effect. Conclusions: This study showed a significant correlation between social support and quality of life of Chinese migrant workers, with healthy lifestyle playing a mediating role. Improving the social support and health literacy of migrant workers and developing a healthy lifestyle are key to improving their quality of life.


Assuntos
Qualidade de Vida , Migrantes , Humanos , Apoio Social , Inquéritos e Questionários , Estilo de Vida Saudável
7.
BMC Plant Biol ; 23(1): 44, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658483

RESUMO

BACKGROUND: Testa color is an important trait of peanut (Arachis hypogaea L.) which is closely related with the nutritional and commercial value. Pink and red are main color of peanut testa. However, the genetic mechanism of testa color regulation in peanut is not fully understood. To elucidate a clear picture of peanut testa regulatory model, samples of pink cultivar (Y9102), red cultivar (ZH12), and two RNA pools (bulk red and bulk pink) constructed from F4 lines of Y9102 x ZH12 were compared through a bulk RNA-seq approach. RESULTS: A total of 2992 differential expressed genes (DEGs) were identified among which 317 and 1334 were up-regulated and 225 and 1116 were down-regulated in the bulk red-vs-bulk pink RNA pools and Y9102-vs-ZH12, respectively. KEGG analysis indicates that these genes were divided into significantly enriched metabolic pathways including phenylpropanoid, flavonoid/anthocyanin, isoflavonoid and lignin biosynthetic pathways. Notably, the expression of the anthocyanin upstream regulatory genes PAL, CHS, and CHI was upregulated in pink and red testa peanuts, indicating that their regulation may occur before to the advent of testa pigmentation. However, the differential expression of down-stream regulatory genes including F3H, DFR, and ANS revealed that deepening of testa color not only depends on their gene expression bias, but also linked with FLS inhibition. In addition, the down-regulation of HCT, IFS, HID, 7-IOMT, and I2'H genes provided an alternative mechanism for promoting anthocyanin accumulation via perturbation of lignin and isoflavone pathways. Furthermore, the co-expression module of MYB, bHLH, and WRKY transcription factors also suggested a fascinating transcriptional activation complex, where MYB-bHLH could utilize WRKY as a co-option during the testa color regulation by augmenting anthocyanin biosynthesis in peanut. CONCLUSIONS: These findings reveal candidate functional genes and potential strategies for the manipulation of anthocyanin biosynthesis to improve peanut varieties with desirable testa color.


Assuntos
Antocianinas , Arachis , Antocianinas/metabolismo , Arachis/genética , Arachis/metabolismo , Redes Reguladoras de Genes , Lignina/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
8.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365288

RESUMO

Salt stress could inhibit the growth and development of crops and negatively affect yield and quality. The objective of this study was to investigate the physiological responses of different asparagus cultivars to salt stress. Twenty days old seedlings ofasalt-tolerant Apollo andasalt-sensitive cultivar JL1 were subjected to 0 (CK) and120 mM NaCl stress for 20 d. Their changes in growth, ion contents, antioxidant enzyme activities and gene expression were analyzed. Salt stress significantly inhibited the growth of both cultivars, and JL1 showed a greater decrease than Apollo. The root development of Apollo was promoted by 120 mM NaCl treatment. The Na+ content in roots, stems, and leaves of both cultivars was increased under salt stress, while K+ content and K+/Na+ decreased. The salt-tolerant cultivar Apollo showed less extent of increase in Na+ and decrease in K+ content and kept a relatively high K+/Na+ ratio to compare with JL1. The contents of proline, soluble sugar and protein increased in Apollo, while thesesubstances changed differently in JL1 under salt stress. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were gradually increased under salt stress in Apollo, while the corresponding enzyme activities in JL1 were decreased at the late stage of salt stress. The expression of SOD, POD, and CAT genes of both cultivars changed in a similar way to the enzyme activities. Malondialdehyde (MDA) content was increased slightly in Apollo, while increased significantly in JL1. At the late stage of salt stress, Apollomaintained a relatively high K+/Na+, osmotic adjustment ability and antioxidant defense capability, and therefore exhibited higher tolerance to salt stress than that of JL1.

9.
Front Endocrinol (Lausanne) ; 13: 977428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387885

RESUMO

Background and purpose: Acylcarnitines (ACars) are important for insulin resistance and type 2 diabetes (T2D). However, their roles in diabetic retinopathy (DR) remain controversial. In this study, we aimed to investigate the association of ACars with DR and their values in DR detection. Methods: This was a two-center case-control study based on the propensity score matching approach between August 2017 to June 2018 in Eastern China. Multivariable logistic regression models were applied to estimate the association of plasma ACars with DR. Differential ACars were screened by models of least absolute shrinkage and selection operator, elastic net, and weighted quantile sum regression, and their roles in DR identification were further evaluated by the area under the receiver operating curve (AUC). Results: Eight of twenty plasma ACars (8:0, 12:0, 12:1, 14:1, 16:2, 18:0, 18:2 and 18:3) were associated with DR, while only ACar 8:0 was selected by three variable selection methods. As compared to those with the 1st tertile of ACar 8:0, the adjusted odds ratio (OR) and 95% confidence interval (CI) of DR were 0.22 (0.08, 0.59) and 0.12 (0.04, 0.36) for subjects in the 2nd and 3rd tertiles, respectively (P for trend < 0.001). Consistent associations were also observed in both restricted cubic spline regression models and subgroup analyses. AUC (95% CI) were 0.74 (0.66, 0.82) for ACar 8:0 alone and 0.77 (0.70, 0.85) for ACar 8:0 combined with covariates. Conclusions: Our findings suggest higher ACar 8:0 is significantly associated with a decreased risk of DR, which provides a unique window for early identification of DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Casos e Controles , China/epidemiologia
10.
Drug Des Devel Ther ; 16: 3877-3891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388083

RESUMO

Purpose: We designed this study to investigate the potential correlations between gut microbiota compositions and hepatic metabolomic disorders in mice with methotrexate (MTX)-induced hepatoxicity. Methods: We used MTX to induce hepatoxicity in healthy Kunming mice, and we determined plasma ALT and AST levels and assessed the liver tissue histopathology. We applied an integrated gas chromatography-mass spectrometry (GC-MS) and 16S ribosomal RNA (rRNA) gene sequencing approach to evaluate the effects of MTX on the gut microbiota and hepatic metabolic profiles of mice. We uncovered correlations between the gut microbiota and hepatic metabolomic profiles by calculating the Spearman correlation coefficient. Results: MTX caused ALT and AST level elevations and hepatoxicity in our mouse model. MTX disrupted amino acid metabolic pathways (including biosyntheses of valine, leucine, and isoleucine; and arginine; and, metabolism of alanine, aspartate, and glutamate; histidine; beta-alanine; and glycine, serine, and threonine); biosyntheses of aminoacyl-tRNA; and pantothenate, and CoA; and, metabolic pathways of energy, glutathione, and porphyrin; and chlorophyll. In addition, MTX increased the abundances of Staphylococcus, Enterococcus, Collinsella, Streptococcus, and Aerococcus, but decreased the amounts of Lactobacillus, Ruminococcus, norank_f_Muribaculaceae, unclassified_f_Lachnospiraceae, norank_f_Lachnospiraceae, A2, Eubacterium_xylanophilum_group, Phascolarctobacterium, Bifidobacterium, and Faecalibaculum. Our correlation analyses showed that different flora abundance changes including those of Phascolarctobacterium, Faecalibaculum, norank_f_Muribaculaceae, Streptococcus, Enterococcus, Staphylococcus, and Collinsella were associated with liver injury. Conclusion: We present evidence supporting the notion that MTX causes hepatoxicity by altering the gut microbiota and hepatic metabolite profiles, our findings provide new venues for the management of MTX-induced hepatoxicity.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Microbiota , Camundongos , Animais , Metotrexato/efeitos adversos , Metaboloma , Metabolômica/métodos , Firmicutes
11.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360313

RESUMO

AhFAD2 is a key enzyme catalyzing the conversion of oleic acid into linoleic acid. The high oleic acid characteristic of peanut mainly comes from the homozygous recessive mutation of AhFAD2A and AhFAD2B genes (aabb). However, even in high-oleic-acid varieties with the aabb genotype, the oleic acid content of seeds with different maturity varies significantly. Therefore, in addition to AhFAD2A and AhFAD2B, other FAD2 members or regulators may be involved in this process. Which FAD2 genes are involved in the regulatory processes associated with seed maturity is still unclear. In this study, four stable lines with different genotypes (AABB, aaBB, AAbb, and aabb) were used to analyze the contents of oleic acid and linoleic acid at different stages of seed development in peanut. Three new AhFAD2 genes (AhFAD2-7, AhFAD2-8, and AhFAD2-9) were cloned based on the whole-genome sequencing results of cultivated peanuts. All peanut FAD2 genes showed tissue preference in expression; however, only the expression level of AhFAD2-7 was positively correlated with the linoleic acid concentration in peanut seeds. These findings provide new insights into the regulation of oleic acid accumulation by maturity, and AhFAD2-7 plays an important role in the maturity dependent accumulation of oleic acid and linoleic acid in peanut.


Assuntos
Arachis , Ácido Oleico , Ácido Oleico/metabolismo , Ácidos Graxos Dessaturases/genética , Ácido Linoleico/metabolismo , Sementes
12.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077124

RESUMO

Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Arachis/metabolismo , Perfilação da Expressão Gênica , Melhoramento Vegetal , Sementes/metabolismo , Transcriptoma
13.
Nutr Diabetes ; 12(1): 36, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931671

RESUMO

OBJECTIVE: Early identification of diabetic retinopathy (DR) is key to prioritizing therapy and preventing permanent blindness. This study aims to propose a machine learning model for DR early diagnosis using metabolomics and clinical indicators. METHODS: From 2017 to 2018, 950 participants were enrolled from two affiliated hospitals of Wenzhou Medical University and Anhui Medical University. A total of 69 matched blocks including healthy volunteers, type 2 diabetes, and DR patients were obtained from a propensity score matching-based metabolomics study. UPLC-ESI-MS/MS system was utilized for serum metabolic fingerprint data. CART decision trees (DT) were used to identify the potential biomarkers. Finally, the nomogram model was developed using the multivariable conditional logistic regression models. The calibration curve, Hosmer-Lemeshow test, receiver operating characteristic curve, and decision curve analysis were applied to evaluate the performance of this predictive model. RESULTS: The mean age of enrolled subjects was 56.7 years with a standard deviation of 9.2, and 61.4% were males. Based on the DT model, 2-pyrrolidone completely separated healthy controls from diabetic patients, and thiamine triphosphate (ThTP) might be a principal metabolite for DR detection. The developed nomogram model (including diabetes duration, systolic blood pressure and ThTP) shows an excellent quality of classification, with AUCs (95% CI) of 0.99 (0.97-1.00) and 0.99 (0.95-1.00) in training and testing sets, respectively. Furthermore, the predictive model also has a reasonable degree of calibration. CONCLUSIONS: The nomogram presents an accurate and favorable prediction for DR detection. Further research with larger study populations is needed to confirm our findings.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Retinopatia Diabética/diagnóstico , Diagnóstico Precoce , Feminino , Humanos , Aprendizado de Máquina , Masculino , Metabolômica , Pessoa de Meia-Idade , Nomogramas , Espectrometria de Massas em Tandem
14.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742819

RESUMO

Peanut is one of the most important oil crops in the world, the growth and productivity of which are severely affected by salt stress. 24-epibrassinolide (EBL) plays an important role in stress resistances. However, the roles of exogenous EBL on the salt tolerance of peanut remain unclear. In this study, peanut seedlings treated with 150 mM NaCl and with or without EBL spray were performed to investigate the roles of EBL on salt resistance. Under 150 mM NaCl conditions, foliar application of 0.1 µM EBL increased the activity of catalase and thereby could eliminate reactive oxygen species (ROS). Similarly, EBL application promoted the accumulation of proline and soluble sugar, thus maintaining osmotic balance. Furthermore, foliar EBL spray enhanced the total chlorophyll content and high photosynthesis capacity. Transcriptome analysis showed that under NaCl stress, EBL treatment up-regulated expression levels of genes encoding peroxisomal nicotinamide adenine dinucleotide carrier (PMP34), probable sucrose-phosphate synthase 2 (SPS2) beta-fructofuranosidase (BFRUCT1) and Na+/H+ antiporters (NHX7 and NHX8), while down-regulated proline dehydrogenase 2 (PRODH). These findings provide valuable resources for salt resistance study in peanut and lay the foundation for using BR to enhance salt tolerance during peanut production.


Assuntos
Arachis , Esteroides Heterocíclicos , Arachis/genética , Arachis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia
15.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742952

RESUMO

Ribosome biogenesis is tightly associated with plant growth and reproduction. Mutations in genes encoding ribosomal proteins (RPs) or ribosome biogenesis factors (RBFs) generally result in retarded growth and delayed flowering. However, the early-flowering phenotype resulting from the ribosome biogenesis defect is rarely reported. We previously identified that the AAA-ATPase MIDASIN 1 (MDN1) functions as a 60S RBF in Arabidopsis. Here, we found that its weak mutant mdn1-1 is early-flowering. Transcriptomic analysis showed that the expression of FLOWERING LOCUS C (FLC) is down-regulated, while that of some autonomous pathway genes and ABSCISIC ACID-INSENSITIVE 5 (ABI5) is up-regulated in mdn1-1. Phenotypic analysis revealed that the flowering time of mdn1-1 is severely delayed by increasing FLC expression, suggesting that the early flowering in mdn1-1 is likely associated with the downregulation of FLC. We also found that the photoperiod pathway downstream of CONSTANTS (CO) and FLOWERING LOCUS T (FT) might contribute to the early flowering in mdn1-1. Intriguingly, the abi5-4 allele completely blocks the early flowering in mdn1-1. Collectively, our results indicate that the ribosome biogenesis defect elicited by the mutation of MDN1 leads to early flowering by affecting multiple flowering regulation pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Mutação , Reprodução , Ribossomos/genética , Ribossomos/metabolismo
16.
Genes (Basel) ; 13(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35627225

RESUMO

Lateral branch angle (LBA), or branch habit, is one of the most important agronomic traits in peanut. To date, the underlying molecular mechanisms of LBA have not been elucidated in peanut. To acquire the differentially expressed genes (DEGs) related to LBA, a TI population was constructed through the hybridization of a bunch-type peanut variety Tifrunner and prostrate-type Ipadur. We report the identification of DEGs related to LBA by sequencing two RNA pools, which were composed of 45 F3 lines showing an extreme opposite bunch and prostrate phenotype. We propose to name this approach Bulk RNA-sequencing (BR-seq) as applied to several plant species. Through BR-seq analysis, a total of 3083 differentially expressed genes (DEGs) were identified, including 13 gravitropism-related DEGs, 22 plant hormone-related DEGs, and 55 transcription factors-encoding DEGs. Furthermore, we also identified commonly expressed alternatively spliced (AS) transcripts, of which skipped exon (SE) and retained intron (RI) were most abundant in the prostrate and bunch-type peanut. AS isoforms between prostrate and bunch peanut highlighted important clues to further understand the post-transcriptional regulatory mechanisms of branch angle regulation. Our findings provide not only important insights into the landscape of the regulatory pathway involved in branch angle formation but also present practical information for peanut molecular breeding in the future.


Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/metabolismo , RNA/metabolismo , RNA-Seq , Análise de Sequência de RNA
18.
Front Mol Biosci ; 9: 822647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372500

RESUMO

Background: Diabetic retinopathy (DR) is a major diabetes-related disease linked to metabolism. However, the cognition of metabolic pathway alterations in DR remains scarce. We aimed to corroborate alterations of metabolic pathways identified in prior studies and investigate novel metabolic dysregulations that may lead to new prevention and treatment strategies for DR. Methods: In this case-control study, we tested 613 serum metabolites in 69 pairs of type 2 diabetic patients (T2DM) with DR and propensity score-matched T2DM without DR via ultra-performance liquid chromatography-tandem mass spectrometry system. Metabolic pathway dysregulation in DR was thoroughly investigated by metabolic pathway analysis, chemical similarity enrichment analysis (ChemRICH), and integrated pathway analysis. The associations of ChemRICH-screened key metabolites with DR were further estimated with restricted cubic spline analyses. Results: A total of 89 differentially expressed metabolites were identified by paired univariate analysis and partial least squares discriminant analysis. We corroborated biosynthesis of unsaturated fatty acids, glycine, serine and threonine metabolism, glutamate and cysteine-related pathways, and nucleotide-related pathways were significantly perturbed in DR, which were identified in prior studies. We also found some novel metabolic alterations associated with DR, including the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives in DR. Conclusions: The results suggest that the metabolism disorder in DR can be better understood through integrating multiple biological knowledge databases. The progression of DR is associated with the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives.

19.
Sci Rep ; 12(1): 5693, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383275

RESUMO

At present, more patients suffer from multiple chronic diseases. However, the hospital's existing chronic disease management is carried out according to the department. This means that a patient needs to go to more than one department for a chronic disease treatment. Therefore, this study proposes 6 dimensions (organizational management, medical service support, medical service, community alliance, self-management support, management information system) and 36 questions, to help evaluate the current chronic disease management system in China's large third-class hospitals. In this study, 143 survey samples from doctors and nurses were collected. A principal component analysis was used to extract three key elements of chronic disease management service delivery system (service management organization, management information system, medical core service). Then, multiple regression was used to establish the relationship model between the overall performance of the system and the main elements. Three key service nodes of the system (medical specialist support, patient tracking management and personalized intervention) were determined according to the weight of the regression model. The regression coefficients of the above three main elements show a similar impact on the overall performance of the system, but the key service nodes under each major element have relative differences, including medical specialist support, patient tracking management and personalized intervention. Finally, to establish a chronic disease management system with multiple departmental continuous care for chronic diseases, it is necessary to improve the chronic disease management system from three aspects of medical specialty support, patient tracking management and personalized intervention. This paper proposes corresponding improvement strategies.


Assuntos
Gerenciamento Clínico , Hospitais , China , Doença Crônica , Pesquisa Empírica , Humanos
20.
Front Aging Neurosci ; 14: 822350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350634

RESUMO

Background: Serum uric acid (UA) has been reported to be associated with ischemic stroke and inflammation. However, whether or not UA is related to the recurrence of ischemic stroke, and whether inflammation plays a role in the relationship between them remain inconclusive. Objective: We sought to explore the relationship between UA and the recurrence of ischemic stroke and to define the role of neutrophil-to-lymphocyte ratio (NLR) in the aforementioned relationship. Methods: A total of 8,995 patients were included in this study. Basic information and blood samples were collected, and whether or not each participant experienced ischemic stroke recurrence within 3 years was documented. Patients were stratified into three groups according to their UA level, as follows: ≤ 266, 267-339, and ≥ 340 µmol/L. COX regression and restricted cubic spline regression models were used to evaluate the clinical correlation between UA and ischemic stroke recurrence, mediation analysis and interaction and joint analysis were used to evaluate the role of NLR in the association of UA and ischemic stroke recurrence, and sensitivity and subgroup analyses were performed to test the robustness of the data. Results: Ischemic stroke recurrence was related to male sex, older age, higher UA level, higher NLR, hypertension, diabetes, and cardiovascular disease. Following adjustment for potential confounders, a high level of UA (≥ 340 µmol/L) increased the risk of recurrence by 92.6% in patients with previous ischemic stroke. We also found that NLR affects the association between UA and the recurrence of ischemic stroke in older adults, suggesting that patients with high NLR and high UA levels are at greater risk for ischemic stroke recurrence. Conclusion: UA level is non-linearly associated with recurrence, and NLR has an additive interaction between UA and ischemic stroke recurrence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...